Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran
نویسندگان
چکیده
BACKGROUND AND METHODOLOGY Measurements by satellite remote sensing were combined with ground-based meteorological measurements to estimate ground-level PM10. Aerosol optical depth (AOD) by both MODIS and MISR were utilized to develop several statistical models including linear and non-linear multi-regression models. These models were examined for estimating PM10 measured at the air quality stations in Tehran, Iran, during 2009-2010. Significant issues are associated with airborne particulate matter in this city. Moreover, the performances of the constructed models during the Middle Eastern dust intrusions were examined. RESULTS In general, non-linear multi-regression models outperformed the linear models. The developed models using MISR AOD generally resulted in better estimate of ground-level PM10 compared to models using MODIS AOD. Consequently, among all the constructed models, results of non-linear multi-regression models utilizing MISR AOD acquired the highest correlation with ground level measurements (R(2) of up to 0.55). The possibility of developing a single model over all the stations was examined. As expected, the results were depreciated, while nonlinear MISR model repeatedly showed the best performance being able to explain up to 38% of the PM10 variability. CONCLUSIONS Generally, the models didn't competently reflect wide temporal concentration variations, particularly due to the elevated levels during the dust episodes. Overall, using non-linear multi-regression model incorporating both remote sensing and ground-based meteorological measurements showed a rather optimistic prospective in estimating ground-level PM for the studied area. However, more studies by applying other statistical models and utilizing more parameters are required to increase the model accuracies.
منابع مشابه
Evaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models
Defined as any substance in the air that may harm humans, animals, vegetation, and materials, air pollution poses a great danger to human health. It has turned into a worldwide problem as well as a huge environmental risk. Recent years have witnessed the increase of air pollution in many cities around the world. Similarly, it has become a big problem in Iran. Although ground-level monitoring ca...
متن کاملEvaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models
Defined as any substance in the air that may harm humans, animals, vegetation, and materials, air pollution poses a great danger to human health. It has turned into a worldwide problem as well as a huge environmental risk. Recent years have witnessed the increase of air pollution in many cities around the world. Similarly, it has become a big problem in Iran. Although ground-level monitoring ca...
متن کاملInvestigating the relationship between ground-level particulate matter and aerosol optical depth during dust storm episodes: a case study of Tehran
Background and Objective: During the last few years, air pollution and increasing levels of particulate matters (PMs) have become major public health issues in the megacity of Tehran. The high cost of constructing and maintaining air pollution monitoring stations has made it difficult to achieve adequate spatial-temporal coverage of PM data over various regions. In this regard, the use of remot...
متن کاملبهرهگیری از مدل اثرات اختلاط خطی جهت پیش بینی غلظت ذرات معلق در سطح زمین: مطالعه موردی در تهران
Background and Objective: In the recent decade, critical condition of particulate matters (PMs) concentration is considered as one of the most important issues in Tehran megacity. Due to sparse spatial distribution of air quality monitoring stations and economic considerations, researchers proposed remote sensing technique as a fast and economical way to obtain complete spatial and temporal cov...
متن کامل